差分探头和单端探头模型(图1)示出从探头衰减器∕放大器地到“大地”的电阻和电感。这是由探头电缆屏蔽和大地构成的传输线(或天线)所造成阻抗的简化模型。这一“外模式”阻抗是重要的,因为在单端探头上施加共模信号时,地电感就与该外模式阻抗构成分压器,从而衰减了放大器得到的地信号。由于放大器的信号输入没有得到与地输入同样的衰减,这就在放大器的输入端造成一个净信号,并由此产生一个输出。地电感越高,共模抑制就越低,因此您在使用单端探头时,务必使地线尽可能短。还应注意该外模式信号并不直接影响“内模式”信号(即同轴电缆内的正常探头输出信号),但反射的外模式信号将影响探头放大器的地,从而间接影响内模式信号。“测量可重复性”部分对此有进一步的说明。
当共模信号施加至差分探头时,在 + 和 - 输入端至衰减器∕放大器上可看到同样的信号。所产生的输出将是放大器共模抑制能力的函数,而并非由连接感抗造成。
图7 差分探头和单端探头的共模响应
当您检测带有共模噪声的单端信号时,需要确定是差分探头,还是单端探头有更好的共模抑制能力。这取决于单端探头的接地连接电感,以及差分探头中放大器的共模抑制能力。对于本例中的差分和单端探测头,图7示出差分探头的共模抑制要比单端探头高得多,因此能在高共模噪声环境中进行更好的测量。这是两种探头的一般情况,除非单端探头有极低电感的接地连接,但这在现实中是难以实现的。应注意这里分析的单端探头,是安捷伦InfiniiMax 1130系列,远好于其它的许多单端探头的共模抑制能力,因为它的地线很短。图7中的共模响应定义为:
差分共模响应= 20[log(voc/vic)]
这里vic是+和-输入的公共电压,voc是施加vic时探头输出处的电压
单端共模响应= 20[log(voc/vic)]
这里vic是信号输入和地输入的公共电压,voc是施加vic时探头输出处的电压
图8 差分探头和单端探头的输入阻抗
探头负载效应比较
如果您用差分探测头和单端探测头的电感和电容值分析图1中的电路模型,您将发现从单端源看过去的各探测头输入阻抗没有多少差别。分析的另一方面是了解外模式阻抗如何影响差分和单端探头。在单端探头放大器模型中,外模式阻抗要比接地连接阻抗高得多(由于存在lg),因此它对输入阻抗并没有明显影响。但由于存在外模式阻抗,进入差分探头的单端信号将看到较高频率比较低频率有略低的容抗值。
图8是差分探头和单端探头的输入阻抗(幅值)图。红色迹线是施加差分源时所看到的差分探头阻抗。绿色迹线是施加单端源时看到的差分探头阻抗,蓝色迹线是施加单端源时看到的单端探头阻抗。在图8中标注了这三种情况的DC电阻、电容和*小电感值。应注意差分探头和单端探头对单端信号的输入阻抗很类似。
测量的可重复性
测量的可重复性是与高频探头相关的问题。在理想情况下,探头位置,电缆位置和手的位置都不应造成探头测量结果的变化。但许多情况下都并非如此。通常的原因是外模式阻抗的改变。这一阻抗实际上远比所示的探头模型复杂,因为未经屏蔽的传输线(或天线),探头、手和电缆位置都会造成极大的影响。
如果您通过改变外模式阻抗分析单端模型,就发现它会造成响应的变化。此外,由于外模式阻抗也是共模响应中的一个因素,因此该阻抗的变化也造成共模抑制的变化。接地连接的阻抗越高,对响应的影响就越大。